Structural changes of purple membrane and bacteriorhodopsin during its denaturation induced by high pH.
نویسندگان
چکیده
Bacteriorhodopsin (bR) trimers naturally form two-dimensional hexagonal crystals in purple membrane (PM), which make it very stable. However, the dnaturation of bR was found to occur during a very narrow pH range when the pH was increased above 12.0, as indicated by inactivation of the photochemical cycle observed by flash photolysis kinetic spectra. Here, atomic force microscopy was used to study the surface structural changes of PM during the denaturation process induced by high pH. Together with the absorption and fluorescence spectra, it was found that the structural changes could be divided into three steps. First, some hydrophobic amino acids of bR become exposed to the aqueous environment and PM loses its 2D crystalline structure, transforming into the so-called "nonisland" structure. Second, bR molecules are extracted out of membrane and form protrusions on the surface like islands in the sea; therefore, the "nonisland" structure transforms into the "island" structure. Finally, most bRs break off from the membrane and form large depositions.
منابع مشابه
Bacteriorhodopsin thermal stability: influence of bound cations and lipids on the intrinsic protein fluorescence.
Temperature-induced changes in protein intrinsic fluorescence of native, delipidated and deionized purple membranes are investigated. It is found that the removal of cations most strongly affects the protein and its thermal stability. The denaturation of dei-BR completes at 70 degrees C, while delipidated and native BR still maintain their native structure at this temperature. Both the quantum ...
متن کاملElectric-field induced pK-changes in bacteriorhodopsin.
Bacteriorhodopsin, the only protein of the purple membranes of halobacteria [ 11, acts as a light-driven proton pump, translocating protons from the inner to the outer side of the plasma membrane [2]. The lightinduced asymmetric proton distribution contributes to the membrane potential by up to lo-40 mV [3]. Assuming a membrane thickness of 50 A, this potential difference corresponds to an elec...
متن کاملEffect of genetic modification of tyrosine-185 on the proton pump and the blue-to-purple transition in bacteriorhodopsin.
The retinylidene chromophore mutant (Y185F) of bacteriorhodopsin, in which Tyr-185 is substituted by phenylalanine, is examined and compared with wild-type bacteriorhodopsin expressed in Escherichia coli; both were reinstituted similarly in vesicles. The Y185F mutant shows (at least) two distinct spectra at neutral pH. Upon light absorption, the blue species (which absorbs in the red) behaves a...
متن کاملStructural changes in bacteriorhodopsin induced by electric impulses
Electric impulses of high field intensity (2 x 105 to 3 × 106 Vm1, 1 to 20 #s duration) cause transient changes in the optical absorbance of suspended purple membranes ofHalobacterium halobium. The electric dichroism at 1 mM NaCl, pH ~ 6,and at 293K is dependent on field strength, pulse duration and wavelength of the monitoring, plane-polarized light in the range 400 to 650 nm. The optically de...
متن کاملConformational flexibility of membrane proteins in electric fields. I. Ultraviolet absorbance and light scattering of bacteriorhodopsin in purple membranes.
Bacteriorhodopsin of halobacterial purple membranes exhibits conformational flexibility in high electric field pulses (1-30 x 10(5) V m(-1), 1-100 micros). High-field electric dichroism data of purple membrane suspensions indicate two kinetically different structural transitions within the protein; involving a rapid (approximately 1 micros) concerted change in the orientation of both retinal an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 109 22 شماره
صفحات -
تاریخ انتشار 2005